Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes
نویسندگان
چکیده
Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 (-) leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 (+) and NO3 (-) release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 (+) and NO3 (-) losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 (+) and NO3 (-) release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 (-) leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 (+) retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 (+) and NO3 (-) release from urea.
منابع مشابه
Evaluation of natural zeolite clinoptilolite efficiency for the removal of ammonium and nitrate from aquatic solutions
Background: Surface water and groundwater pollution with various forms of nitrogen such as ammonium and nitrate ions is one of the main environmental risks. The major objectives of this study were to evaluate the capacity of natural zeolite (clinoptilolite) to remove NO3- and NH4+ from polluted water under both batch and column conditions. Methods: The laboratory batch and column experiments we...
متن کاملA new Method for the Removal of Ammonium from Drinking Water Using Hybrid Method of Modified Zeolites / Catalytic Ozonation
Introduction: Ammonia in form of ammonium ions is toxic and could decrease the dissolved oxygen in water and endanger the aquatic life. The aim of this study is the removal of ammonium using oxidation and adsorption by catalytic ozonation and clinoptilolite zeolite, respectively. Methods: The research method is Experimental. First, optimal pH of ammonium adsorption on carbon catalyst (5 g/L), ...
متن کاملNitrate Removal from Aqueous Solution by Using Modified Clinoptilolite Zeolite
Background & Aims of the Study: Nitrate is one of the most important pollutants that its reduced form, nitrite, can cause serious problems for human health and environment. Adsorption with cheap sorbents such as Zeolite is the best way for removal of this pollutant. So this study aimed to apply modified Clinoptilolite Zeolite for nitrate removal. Materials & Methods...
متن کاملUse of Ion Exchange for Removal of Ammonium: a Biological Regeneration of Zeolite
Nitrogen in the Ammonia form can have deleterious effects in water resources. Ion Exchange by zeolite and biological Nitrification processes are two proposed methods for removing Nitrogen compounds from wastewater and effluents. The main objective of this research was to investigate the efficiency of nitrifying bacteria for regenerating Clinoptilolite zeolite. In this research, the Semnan Clino...
متن کاملAmmonium removal from wastewaters using natural New Zealand zeolites
Ammoniacal nitrogen (ammonia and ammonium) in agricultural wastewaters can promote eutrophication of receiving waters and be potentially toxic to fish and other aquatic life. Zeolites, which are hydrated aluminum-silicate minerals, have an affinity for ammonium ions (NH4"") and are, therefore, potentially useful in removing this contaminant from wastewaters. The major objectives of this study w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015